Learning Outcomes

1. Students will be able to apply the principles of natural selection and mechanisms of genetic change, including trait variation and heritability, to explain the observed diversity of life that has arisen over long-term as well as recent evolutionary time frames.
2. Students will be able to apply a knowledge of genetics, gene expression, growth and development, signal perception and transduction, and physiological regulation to explain how information is stored, transmitted and utilized in biological contexts.
3. Students will be able to apply knowledge of molecular, cellular, and organismal structures to explain the diverse set of functions – ranging from the sub cellular to behavioral to ecological – that underlie the remarkable diversity of individual organisms as well as communities of organisms.
4. Students will be able to explain how biological units interact to give rise to emergent properties at multiple levels of biological organization. These interactions range from the cycling of matter and energy at the subcellular to organismal to biogeochemical scales to the interaction and interdependency of organisms, including humans, with their environment.
5. Students will be able to apply the process of science to identify knowledge gaps, formulate hypotheses, and test them against experimental and observational data to advance an understanding of the natural world.
6. Students will be able to use mathematical and computational methods and tools to describe living systems and be able to apply quantitative approaches, such as statistics, quantitative analysis of dynamic systems, or mathematical modeling.
7. Students will be able to apply concepts and subdisciplinary knowledge from within and outside of biology in order to interpret biological phenomena, communicate with clear written and oral arguments, and work collaboratively to solve problems.
8. Students will be able to evaluate the interactions between biology and society, including the societal impacts of biological research as well as public perception and decision-making about science, and clearly communicate biological concepts and their implications to broad audiences.
9. Students will be able to apply biological concepts around environmental and human health to develop informed opinions on economic and societal issues.